Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Cell Biol ; 26(3): 464-477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321204

RESUMO

Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-ß-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.


Assuntos
Leucemia Mieloide Aguda , Reprogramação Metabólica , Humanos , Monitorização Imunológica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco , Células-Tronco Neoplásicas/metabolismo
2.
Front Cell Dev Biol ; 11: 1310268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928908
4.
Nat Cell Biol ; 25(1): 170-182, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36624186

RESUMO

T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor de Morte Celular Programada 1/genética , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo , Apoptose , Morte Celular , Células-Tronco/metabolismo
5.
Adv Exp Med Biol ; 1442: 125-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228962

RESUMO

Hematopoietic stem cells (HSCs) are the source for all blood cells, including immune cells, and they interact dynamically with the immune system. This chapter will explore the nature of stem cells, particularly HSCs, in the context of their immune microenvironment. The dynamic interactions between stem cells and the immune system can have profound implications for current and future therapies, particularly regarding a potential "immune-privileged" HSC microenvironment. Immune/stem cell interactions change during times of stress and injury. Recent advances in cancer immunotherapy have overturned the long-standing belief that, being derived from the self, cancer cells should be immunotolerant. Instead, an immunosurveillance system recognizes and eliminates emergent pre-cancerous cells. Only in the context of a failing immunosurveillance system does cancer fully develop. Combined with the knowledge that stem cells or their unique properties can be critically important for cancer initiation, persistence, and resistance to therapy, understanding the unique immune properties of stem cells will be critical for the development of future cancer therapies. Accordingly, the therapeutic implications for leukemic stem cells (LSCs) inheriting an immune-privileged state from HSCs will be discussed. Through their dynamic interactions with a diverse immune system, stem cells serve as the light and dark root of cancer prevention vs. development.


Assuntos
Leucemia , Nicho de Células-Tronco , Humanos , Células-Tronco Neoplásicas , Células-Tronco Hematopoéticas , Leucemia/terapia , Sistema Imunitário , Microambiente Tumoral
6.
Blood ; 140(15): 1686-1701, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35881840

RESUMO

Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.


Assuntos
Células-Tronco Hematopoéticas , Esfingosina , Glicólise/genética , Células-Tronco Hematopoéticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Prolil Hidroxilases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628308

RESUMO

Radiation-induced loss of the hematopoietic stem cell progenitor population compromises bone marrow regeneration and development of mature blood cells. Failure to rescue bone marrow functions results in fatal consequences from hematopoietic injury, systemic infections, and sepsis. So far, bone marrow transplant is the only effective option, which partially minimizes radiation-induced hematopoietic toxicities. However, a bone marrow transplant will require HLA matching, which will not be feasible in large casualty settings such as a nuclear accident or an act of terrorism. In this study we demonstrated that human peripheral blood mononuclear cell-derived myeloid committed progenitor cells can mitigate radiation-induced bone marrow toxicity and improve survival in mice. These cells can rescue the recipient's hematopoietic stem cells from radiation toxicity even when administered up to 24 h after radiation exposure and can be subjected to allogenic transplant without GVHD development. Transplanted cells deliver sEVs enriched with regenerative and immune-modulatory paracrine signals to mitigate radiation-induced hematopoietic toxicity. This provides a natural polypharmacy solution against a complex injury process. In summary, myeloid committed progenitor cells can be prepared from blood cells as an off-the-shelf alternative to invasive bone marrow harvesting and can be administered in an allogenic setting to mitigate hematopoietic acute radiation syndrome.


Assuntos
Síndrome Aguda da Radiação , Células-Tronco de Sangue Periférico , Animais , Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Leucócitos Mononucleares , Camundongos
8.
J Pediatr Surg ; 57(2): 297-301, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34758909

RESUMO

BACKGROUND: Economic, social, and psychologic stressors are associated with an increased risk for abusive injuries in children. Prolonged physical proximity between adults and children under conditions of severe external stress, such as witnessed during the COVID-19 pandemic with "shelter-in-place orders", may be associated with additional increased risk for child physical abuse. We hypothesized that child physical abuse rates and associated severity of injury would increase during the early months of the pandemic as compared to the prior benchmark period. METHODS: We conducted a nine-center retrospective review of suspected child physical abuse admissions across the Western Pediatric Surgery Research Consortium. Cases were identified for the period of April 1-June 30, 2020 (COVID-19) and compared to the identical period in 2019. We collected patient demographics, injury characteristics, and outcome data. RESULTS: There were no significant differences in child physical abuse cases between the time periods in the consortium as a whole or at individual hospitals. There were no differences between the study periods with regard to patient characteristics, injury types or severity, resource utilization, disposition, or mortality. CONCLUSIONS: Apparent rates of new injuries related to child physical abuse did not increase early in the COVID-19 pandemic. While this may suggest that pediatric physical abuse was not impacted by pandemic restrictions and stresses, it is possible that under-reporting, under-detection, or delays in presentation of abusive injuries increased during the pandemic. Long-term follow-up of subsequent rates and severity of child abuse is needed to assess for unrecognized injuries that may have occurred.


Assuntos
COVID-19 , Maus-Tratos Infantis , Adulto , Criança , Humanos , Pandemias , Abuso Físico , Estudos Retrospectivos , SARS-CoV-2 , Centros de Traumatologia
9.
Urol Oncol ; 39(12): 837.e1-837.e7, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580026

RESUMO

OBJECTIVE: To determine the impact of health care system access on outcomes for Hispanic and Non-Hispanic White patients with renal cell carcinoma (RCC). METHODS: We retrospectively analyzed Hispanic and non-Hispanic White patients diagnosed with localized RCC between 2007 and 2020. We used Health Resources and Services Administration criteria to identify patients living in Medically Underserved Areas (MUA). Primary outcome all-cause mortality and cancer-specific survival using Log Rank test on Kaplan Meier Analysis. Secondary outcome was all-cause mortality and cancer specific survival on Cox Regression when adjusting for risk factors. RESULTS: We analyzed 774 patients, 246 (31.8%) Hispanic patients and 528 (68.2%) Non-Hispanic White patients. Hispanic ethnicity was associated with lower risk of ACM (HR 0.53, P = 0.019) and there was no difference for cancer specific survival (HR 0.57, P = 0.059). Living in a MUA was associated with worse all-cause mortality (P = 0.010) but not cancer specific survival (CSS) (P = 0.169). Comparing Hispanic and Non-Hispanic Whites, KMA revealed no difference in 5-year all-cause mortality (83.1% vs. 78.8%, P = 0.254) and 5-year CSS (85.7% vs. 85.4%, P = 0.403). CONCLUSIONS: Hispanics had lower all-cause mortality risk and no significant differences in 5-year overall survival and CSS compared to non-Hispanic Whites. Our findings indicate that tertiary referral centers may help mitigate inequalities in access to care.


Assuntos
Acessibilidade aos Serviços de Saúde/normas , Disparidades em Assistência à Saúde/normas , Neoplasias Renais/epidemiologia , Neoplasias Renais/cirurgia , Feminino , Hispânico ou Latino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , População Branca
10.
Mol Cell Oncol ; 7(5): 1801088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944648

RESUMO

Cancer stem cells (CSCs) underlie resistance to therapy. Cancer develops only in the context of failing immunosurveillance, and stem cells occupy immune privileged microenvironments. Recent evidence demonstrates that CSCs borrow immune privilege from their normal counterparts. However, low doses of doxorubicin can target CSCs by restoring anticancer immunity.

11.
Nat Cell Biol ; 22(6): 689-700, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32313104

RESUMO

Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt-ß-catenin and PI3K-Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate ß-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt-ß-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated ß-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, ß-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated ß-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Rep ; 26(3): 652-669.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650358

RESUMO

Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration.


Assuntos
Caderinas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco/metabolismo , Células Estromais/metabolismo , Humanos
13.
Cell Res ; 28(10): 1042, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150672

RESUMO

In the initial published version of this article, there was an inadvertent omission from the Acknowledgements that this work was supported by Stowers Institute for Medical Research (SIMR-1004) and NIH National Cancer Institute grant to University of Kansas Cancer Center (P30 CA168524). This omission does not affect the description of the results or the conclusions of this work.

14.
Cell Res ; 28(9): 904-917, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30065315

RESUMO

Transplantation of hematopoietic stem cells (HSCs) from human umbilical cord blood (hUCB) holds great promise for treating a broad spectrum of hematological disorders including cancer. However, the limited number of HSCs in a single hUCB unit restricts its widespread use. Although extensive efforts have led to multiple methods for ex vivo expansion of human HSCs by targeting single molecules or pathways, it remains unknown whether it is possible to simultaneously manipulate the large number of targets essential for stem cell self-renewal. Recent studies indicate that N6-methyladenosine (m6A) modulates the expression of a group of mRNAs critical for stem cell-fate determination by influencing their stability. Among several m6A readers, YTHDF2 is recognized as promoting targeted mRNA decay. However, the physiological functions of YTHDF2 in adult stem cells are unknown. Here we show that following the conditional knockout (KO) of mouse Ythdf2 the numbers of functional HSC were increased without skewing lineage differentiation or leading to hematopoietic malignancies. Furthermore, knockdown (KD) of human YTHDF2 led to more than a 10-fold increase in the ex vivo expansion of hUCB HSCs, a fivefold increase in colony-forming units (CFUs), and more than an eightfold increase in functional hUCB HSCs in the secondary serial of a limiting dilution transplantation assay. Mapping of m6A in RNAs from mouse hematopoietic stem and progenitor cells (HSPCs) as well as from hUCB HSCs revealed its enrichment in mRNAs encoding transcription factors critical for stem cell self-renewal. These m6A-marked mRNAs were recognized by Ythdf2 and underwent decay. In Ythdf2 KO HSPCs and YTHDF2 KD hUCB HSCs, these mRNAs were stabilized, facilitating HSC expansion. Knocking down one of YTHDF2's key targets, Tal1 mRNA, partially rescued the phenotype. Our study provides the first demonstration of the function of YTHDF2 in adult stem cell maintenance and identifies its important role in regulating HSC ex vivo expansion by regulating the stability of multiple mRNAs critical for HSC self-renewal, thus identifying potential for future clinical applications.


Assuntos
Adenosina/análogos & derivados , Autorrenovação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Animais , Células-Tronco Hematopoéticas/patologia , Camundongos , Camundongos Knockout
15.
Cell Stem Cell ; 22(5): 740-754.e7, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727682

RESUMO

Hox genes modulate the properties of hematopoietic stem cells (HSCs) and reacquired Hox expression in progenitors contributes to leukemogenesis. Here, our transcriptome and DNA methylome analyses revealed that Hoxb cluster and retinoid signaling genes are predominantly enriched in LT-HSCs, and this coordinate regulation of Hoxb expression is mediated by a retinoid-dependent cis-regulatory element, distal element RARE (DERARE). Deletion of the DERARE reduced Hoxb expression, resulting in changes to many downstream signaling pathways (e.g., non-canonical Wnt signaling) and loss of HSC self-renewal and reconstitution capacity. DNA methyltransferases mediate DNA methylation on the DERARE, leading to reduced Hoxb cluster expression. Acute myeloid leukemia patients with DNMT3A mutations exhibit DERARE hypomethylation, elevated HOXB expression, and adverse outcomes. CRISPR-Cas9-mediated specific DNA methylation at DERARE attenuated HOXB expression and alleviated leukemogenesis. Collectively, these findings demonstrate pivotal roles for retinoid signaling and the DERARE in maintaining HSCs and preventing leukemogenesis by coordinate regulation of Hoxb genes.


Assuntos
Epigênese Genética/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Proteínas de Homeodomínio/antagonistas & inibidores , Retinoides/farmacologia , Animais , Elementos Facilitadores Genéticos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Células HEK293 , Hematopoese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retinoides/química
16.
PLoS Genet ; 13(6): e1006771, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640831

RESUMO

Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments.


Assuntos
Variações do Número de Cópias de DNA , Leucemia/genética , RNA Ribossômico/genética , Animais , Células Cultivadas , Dano ao DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
17.
Cell Stem Cell ; 18(2): 214-28, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26627594

RESUMO

The mammalian imprinted Dlk1-Gtl2 locus produces multiple non-coding RNAs (ncRNAs) from the maternally inherited allele, including the largest miRNA cluster in the mammalian genome. This locus has characterized functions in some types of stem cell, but its role in hematopoietic stem cells (HSCs) is unknown. Here, we show that the Dlk1-Gtl2 locus plays a critical role in preserving long-term repopulating HSCs (LT-HSCs). Through transcriptome profiling in 17 hematopoietic cell types, we found that ncRNAs expressed from the Dlk1-Gtl2 locus are predominantly enriched in fetal liver HSCs and the adult LT-HSC population and sustain long-term HSC functionality. Mechanistically, the miRNA mega-cluster within the Dlk1-Gtl2 locus suppresses the entire PI3K-mTOR pathway. This regulation in turn inhibits mitochondrial biogenesis and metabolic activity and protects LT-HSCs from excessive reactive oxygen species (ROS) production. Our data therefore show that the imprinted Dlk1-Gtl2 locus preserves LT-HSC function by restricting mitochondrial metabolism.


Assuntos
Loci Gênicos , Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Acetilcisteína/farmacologia , Animais , Antígenos CD/metabolismo , Proteínas de Ligação ao Cálcio , Feto/metabolismo , Impressão Genômica , Células HEK293 , Humanos , Fígado/citologia , Fígado/embriologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/ultraestrutura , Mutação/genética , Biogênese de Organelas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirolimo/farmacologia
18.
Nat Med ; 20(11): 1321-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25326798

RESUMO

Multiple bone marrow stromal cell types have been identified as hematopoietic stem cell (HSC)-regulating niche cells. However, whether HSC progeny can serve directly as HSC niche cells has not previously been shown. Here we report a dichotomous role of megakaryocytes (MKs) in both maintaining HSC quiescence during homeostasis and promoting HSC regeneration after chemotherapeutic stress. We show that MKs are physically associated with HSCs in the bone marrow of mice and that MK ablation led to activation of quiescent HSCs and increased HSC proliferation. RNA sequencing (RNA-seq) analysis revealed that transforming growth factor ß1 (encoded by Tgfb1) is expressed at higher levels in MKs as compared to other stromal niche cells. MK ablation led to reduced levels of biologically active TGF-ß1 protein in the bone marrow and nuclear-localized phosphorylated SMAD2/3 (pSMAD2/3) in HSCs, suggesting that MKs maintain HSC quiescence through TGF-ß-SMAD signaling. Indeed, TGF-ß1 injection into mice in which MKs had been ablated restored HSC quiescence, and conditional deletion of Tgfb1 in MKs increased HSC activation and proliferation. These data demonstrate that TGF-ß1 is a dominant signal emanating from MKs that maintains HSC quiescence. However, under conditions of chemotherapeutic challenge, MK ablation resulted in a severe defect in HSC expansion. In response to stress, fibroblast growth factor 1 (FGF1) signaling from MKs transiently dominates over TGF-ß inhibitory signaling to stimulate HSC expansion. Overall, these observations demonstrate that MKs serve as HSC-derived niche cells to dynamically regulate HSC function.


Assuntos
Ciclo Celular , Células-Tronco Hematopoéticas/patologia , Homeostase , Megacariócitos/citologia , Regeneração , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Homeostase/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Camundongos Endogâmicos C57BL , Regeneração/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
19.
Gastroenterology ; 145(2): 383-95.e1-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23644405

RESUMO

BACKGROUND & AIMS: Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues. METHODS: We used immunohistochemistry, real-time reverse-transcription polymerase chain reaction, and fluorescence-activated cell sorting (FACS) to analyze intestinal epithelial cells isolated from mouse and human intestinal tissues. We compared different combinations of surface markers among ISCs isolated based on expression of Lgr5-green fluorescent protein. We developed a culture protocol to facilitate the identification of functional ISCs from mice and then tested the assay with human intestinal crypts and putative ISCs. RESULTS: CD44(+)CD24(lo)CD166(+) cells, isolated by FACS from mouse small intestine and colon, expressed high levels of stem cell-associated genes. Transit-amplifying cells and progenitor cells were then excluded based on expression of GRP78 or c-Kit. CD44(+)CD24(lo)CD166(+) GRP78(lo/-) putative stem cells from mouse small intestine included Lgr5-GFP(hi) and Lgr5-GFP(med/lo) cells. Incubation of these cells with the GSK inhibitor CHIR99021 and the E-cadherin stabilizer Thiazovivin resulted in colony formation by 25% to 30% of single-sorted ISCs. CONCLUSIONS: We developed a culture protocol to identify putative ISCs from mouse and human tissues based on cell surface markers. CD44(+)CD24(lo)CD166(+), GRP78(lo/-), and c-Kit(-) facilitated identification of putative stem cells from the mouse small intestine and colon, respectively. CD44(+)CD24(-/lo)CD166(+) also identified putative human ISCs. These findings will facilitate functional studies of mouse and human ISCs.


Assuntos
Células-Tronco Adultas/metabolismo , Antígenos de Superfície/metabolismo , Mucosa Intestinal/citologia , Molécula de Adesão de Leucócito Ativado/metabolismo , Animais , Antígeno CD24/metabolismo , Técnicas de Cultura de Células , Colo/citologia , Ensaio de Unidades Formadoras de Colônias , Chaperona BiP do Retículo Endoplasmático , Citometria de Fluxo , Proteínas de Choque Térmico/genética , Humanos , Receptores de Hialuronatos/metabolismo , Intestino Delgado/citologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo
20.
Blood ; 120(9): 1831-42, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22802336

RESUMO

Previous studies have shown that fibroblast growth factor (FGF) signaling promotes hematopoietic stem and progenitor cell (HSPC) expansion in vitro. However, it is unknown whether FGF promotes HSPC expansion in vivo. Here we examined FGF receptor 1 (FGFR1) expression and investigated its in vivo function in HSPCs. Conditional knockout (CKO) of Fgfr1 did not affect phenotypical number of HSPCs and homeostatic hematopoiesis, but led to a reduced engraftment only in the secondary transplantation. When treated with 5-fluorouracil (5FU), the Fgfr1 CKO mice showed defects in both proliferation and subsequent mobilization of HSPCs. We identified megakaryocytes (Mks) as a major resource for FGF production, and further discovered a novel mechanism by which Mks underwent FGF-FGFR signaling dependent expansion to accelerate rapid FGF production under stress. Within HSPCs, we observed an up-regulation of nuclear factor κB and CXCR4, a receptor for the chemoattractant SDF-1, in response to bone marrow damage only in control but not in Fgfr1 CKO model, accounting for the corresponding defects in proliferation and migration of HSPCs. This study provides the first in vivo evidence that FGF signaling facilitates postinjury recovery of the mouse hematopoietic system by promoting proliferation and facilitating mobilization of HSPCs.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Sistema Hematopoético/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Antimetabólitos Antineoplásicos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Fluoruracila/farmacologia , Expressão Gênica/efeitos dos fármacos , Sistema Hematopoético/citologia , Sistema Hematopoético/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores CXCR4/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA